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The flow pattern of blood in the heart is intimately connected with the performance 
of the heart valves. This paper extends previous work on the solution of the Navier-Stokes 
equations in the presence of moving immersed boundaries which interact with the fluid. 
The boundary representation now includes the muscular heart wall. The tixed topology of 
the boundary representation is exploited in the solution of the nonlinear equations which 
implicitly define the boundary forces. An improved numerical representation of the 6- 
function is introduced. A fast Laplace-solver is used. The results of calculations with a 
natural valve and with a prosthetic valve are presented. 

1. INTRODUCTION 

The flow pattern of blood in the heart is intimately connected with the performance 
of the heart valves and is therefore of interest in the design of artificial valves and 
artificial hearts. In [l] we reported a numerical method for solving the Navier-Stokes 
equations in the presence of moving immersed boundaries (the heart-valve leaflets) 
which move at the local fluid velocity and exert forces locally on the fluid. This 
method has now been extended and improved in several ways. 

We generalize the boundary representation so that it now includes not only the 
heart-valve leaflets but also the muscular heart wall. We use Newton’s method to 
solve the equations which implicitly define the boundary forces, and we exploit the 
fixed topology of the boundary representation to generate an efficient Cholesky 
factorization of the relevant matrix. We introduce an improved numerical representa- 
tion of the S-function with remarkable properties which lead to approximate 
translation invariance in the interaction between boundary points. Finally, we retain 
Chorin’s finite difference method for the Navier-Stokes equations [2], but we in- 
corporate into this method the fast Laplace-solver of [3]. The possibility of using a fast 
Laplace-solver in a problem with moving boundaries of complicated geometry arises 
because of our representation of the boundary as a field of forces defined on the 
rectangular fluid mesh. The methods of this paper were reported in preliminary 
form in [4, 51 and a brief discussion of the corresponding experimental results is 
given in [6]. 
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2. EQUATIONS OF MOTION 

The nonfluid parts of the heart, the valves and heart muscle, are incompressible 
and neutrally buoyant in blood. The mass density p is therefore a constant, and it is 
very attractive to use a single velocity field u(x, t) with div u = 0 to describe the 
motion of the blood, valves, and heart muscle. The walls of the heart are moving, 
but it is convenient to have the velocity field u defined on a fixed domain. This can 
be accomplished by embedding the domain of interest in a larger periodic box and 
by regarding the part of this box exterior to the heart as being filled with fluid. The 
presence of this external fluid will have only a slight effect on the interior flow pattern, 
provided that the periodic box is big enough and that provision is made for external 
sources or sinks to accomodate the changes in volume which occur during the cardiac 
cycle because of inflow from the veins and outflow through the arteries. Because of 
the imposed periodicity in space, there are, in effect, no external boundaries, and we 
shall use the term “boundary” in the following to refer to the valves and heart muscle, 
which are internal boundaries. 

Our aim is to write the equations of motion in a formwhich makes as little distinction 
as possible between the fluid and nonfluid regions. We must take account, however, 
of the extra forces acting in the valves and heart muscle. To describe these we introduce 
a force density F(x, t) which differs from zero only on these nonfluid regions. (In case 
these nonfluid regions are represented as surfaces, F will be singular.) This notational 
device makes it possible to use the Navier-Stokes equations on the entire periodic 
domain 52: 

p(&u + u . Vu) = -VP + qAu + F, (2.1) 
V*u=O. (2.2) 

The calculation of the boundary force density F requires a knowledge of the 
configuration in space of the material points of the boundary. That is, we need a 
Lagrangian representation. The following notational device achieves this without 
the introduction of a coordinate system in the boundary. Moreover, it leads naturally 
to a numerical scheme. 

Let a dense sequence of material sample points of the immersed boundary be 
labeled by the index’k = 1,2,..., and let xk be the position in space of the point k. 
Then {xR} completely determines the configuration of the immersed boundary, the 
deformations of which are continuous. 

Once a choice of the sample points (x,J has been made, we can define the “boundary 
integral” of a function 4(x) over a region R: 

(2.3) 

where 
6,(R) = l,X,ER 

= 
s 

6(x - xk) dr, (2.4) 
= 0, xk$ R R 
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and where 4% = +(xJ. The value of this integral depends on the choice of sample 
points. The measure &R) defined by this choice is the fraction of sample points of the 
boundary which fall in the region R. 

Now let f be the intensity of the boundary force with respect to this measure. That 
is, for an arbitrary region R, let 

s F dv = 
s f dm 

R R 

= $i $ f f&,(R) 
k=l 

$5 $ ‘$ f,  f ,  6(x - XJ dv 
k=l 

lim L f f&x - x,) 
N-a N k=l 1 dv. 

From this (formal) argument, since the region R is arbitrary, we conclude that 

F(x) = jii ; 5 fka(x - xk). 

k=l 
(2.6) 

For fixed N, we represent the boundary force field as a sum of impulse functions 
applied at N distinct points. As N --j co, more and more impulses are used, and the 
intensity of each impulse diminishes accordingly. It is important to note that the 
limiting force field may or may not be singular depending on the number of dimensions 
of the “boundary” and of the space in which it is immersed. Let s be the number of 
space dimensions and b be the number of dimensions of the boundary. ThenF(x) will 
be singular (in the limit N --+ co) like a a-function in s - b dimensions, and nonsingular 
when s = b. We have assumed in the foregoing that the boundary has been sampled 
in such a way that f remains finite. That is, we have assumed that each portion of the 
boundary which is capable of exerting a finite force has been assigned nonzero 
measure by the sampling process. 

For an elastic boundary, the boundary forces will depend on the boundary con- 
figuration. Thus 

fk = f,(x, ) x, ,...). (2.7) 

We also have the following equation of motion for the sample points of the boundary: 

dx,/dt = u(xk , t) = u(x, t) 6(x - xk) dv, cw 

the latter equality being simply the definition of the S-function. Since the fluid is 
viscous, the velocity field is continuous across the immersed boundaries and (2.8) is 
not ambiguous. 
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We can summarize the equations of motion as follows: 

&u + u . vu) = -VP + vdu + F, 

v * u = 0, 

dx,/dt = u(x, , t> = j 14% t) 6(x - xk) dq (2.9) 
XE62 

F(x) = $ (l/N) 5 f&x - x,), 
k-1 

fk = f&l , x2 ,-.)* 

Note that the a-function appears as a kernel in each of the equations in which a 
transition is made from boundary to fluid quantities or conversely. This expresses 
the local character of the interaction between the boundary and the fluid. Nevertheless, 
the boundary forces are felt instantaneously throughout the incompressible fluid. 
This comes about because V * F acts as a source for the pressure field. 

3. LINK STRUCTURES 

The natural discretization of the boundary representation given above occurs 
simply by making N finite. In that case the configuration of the boundary is given 
by {xl *.* xN} and the boundary forces are given by functions &(x1 -0. xN). We now 
restrict the form of these functions by assuming that the forces arise in straight-line 
segments connecting specified pairs of boundary points. Suppose that the link AB 
connects points A and B, and let 

XAB = & - XA, 

LAB = 1 XAB 1, 

T,J,Lm) = tension in link AB, 

%4B = hB/LAB , 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
then, 

(l/N)fA = f TAB%4B. 
B=l 
B#A 

(3.5) 

We shall also need an expression for the changes in fa that are produced (to first 
order) by a perturbation of the boundary configuration. This expression will have the 
form 

(3.6) 
B=l 
B#A 
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where QAB is an s x s matrix referring to the link AB, and s = 2, 3 is the number of 
space dimensions. The matrix QAB can be diagonalized by rotating to a system of 
coordinates in which the first coordinate is parallel to the link AB. In such a system, 
the first diagonal element is dT,,/dL AB , and the remaining diagonal elements are 
TABILAB . The following properties of the QA8 matrices should be noted. 

(i) If T,,, 3 0 and (dTAB/dLAB) 3 0, then Q AB > 0. (Inequalities applied to 
a matrix will refer to the definiteness of the matrix. Thus QAB 3 0 means QAB is 
positive semidefinite.) 

(ii) For fixed AB, QAB is symmetric. 

(iii> QA~ = QBA 
(iv) If TAB = 0 (th t a is, if there is no link between A and B), then QAB = 0. 

Thus far, the QAB matrices are defined only for A # B. It will be useful, however, 
to introduce 

QAA = - f QAB. (3.7) 
B=l 
BfA 

This allows us to rewrite (3.6) as 

(3.8) 
B=l B-l 

B#A 

The last summation has the form of matrix multiplication. Letf stand for the vector 
(fl 1.. fN) and let x stand for the vector (x1 -.a xN). Let Q be the SN x SN matrix 
constructed by writing the QAB blocks in their natural order. Then (3.8) may be 
written 

(4) = NQ6-W. (3.9 

If the off-diagonal blocks QAB are indeed > 0 (that is, if dTAB/dLAB 3 0 and 
TAB/LAB > 0, all A # B),, then the symmetric matrix Q < 0. This result has both 
physical and numerical significance which will be explained below. First, we give 
the proof. It is to be shown that yTQy < 0 for all y. Using (3.7) and the symmetry 
properties of Q, one can verify that 

-V’QY = - g  Y  A * QABYB = + iA5 (YA - YB) * QAB(YA - YB). (3.10) 

But every term in the last summation is 3 0, since the diagonal terms are zero and the 
off-diagonal blocks QAB >, 0. Therefore, yTQy < 0 and Q < 0. 

The physical significance of this result is that it implies (df, dx) < 0. This is a 
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stability condition, since it asserts that the forces generated by a perturbation oppose 
the perturbation. As an instructive example, consider a straight chain of links which 
satisfies dT/dL > 0. If the chain is under tension, T > 0, it is stable. Under compres- 
sion, T < 0, the chain will buckle since perturbations away from the straight-line 
configuration produce forces which tend to increase the perturbation. 

It is important to remark, however, that T < 0 does not always produce instability. 
For example, an equilateral triangle of links will be stable under tension or compres- 
sion. The corresponding matrix Q will be negative semidefinite in both cases, even 
though the QAB blocks will be indefinite in the case of compression. This example 
shows that Q AB > 0 for all A # B is a sufficient, but not a necessary, condition for 
Q < 0. 

We now discuss the numerical significance of the matrix Q constructed above. In 
order to secure numerical stability (see Section VII), we need to solve at each time 
step a system of equations of the form 

% * = x,7$0 + &(x1* **a xN*), (3.11) 

where xko and h > 0 are given. The solution of this nonlinear fixed-point problem by 
Newton’s method involves the factorization of the sN x SN matrix I - hNQ. If the 
link structure is stable (Q < 0), then I - hNQ > 0. We assume that this condition 
holds, and we use a Cholesky factorization of the matrix I - ANQ. 

The graph giving the block structure of I - hNQ is precisely the link structure of 
the boundary, with the boundary points as nodes and the links as edges. Although 
the boundary points move about in space, the topology is fixed. To preserve sparsity as 
much as possible during the factorization, we seek a numbering of the boundary 
points such that, in most cases, the points A and B are linked only if 1 A - B 1 is 
small. The exceptional points are then numbered last. This results in a matrix with 
the structure shown in Fig. 1, a structure which is preserved during the factorization 
[7]. An example of a numbering with the desired properties is shown in Fig. 2. 

FIG. 1. The sparsity structure achieved by numbering the boundary points in such a manner 
that points k and I with k < I Q N are linked only if (I - k) or (N - I) is small. 
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OUTFLOW 
TRACT 

ATRIUM 

VENTRICLE 

FIG. 2. An example of a numbering scheme with the required properties. The points 22-24, 
which are numbered last, constitute a separation set. Their deletion breaks up the boundary into 
four separate graphs, each of which has a matrix with a band structure. Note that the number of 
boundary points has been drastically reduced for clarity. 

4. BOUNDARY FORCES 

We shall now describe some specialized link structures which can be used in the 
representation of valve leaIlets, heart muscle, and artificial valves. The properties 
of the material in question are, in effect, synthesized by the choice of an appropriate 
length-tension relation for each link and of an appropriate arrangement of the links 
in space. 

Natural Heart Valve Leaflets 

At present, in our two-dimensional calculations each valve leaflet appears as a 
chain of links, each link having a length-tension relation as follows: 

T(L) = (L - Lo)& L >L, 

ZZ 0, L < L , 
(4.1) 

where S is the stiffness and L, is the resting length. Alternatively, a nonlinear length- 
tension relation could be used without difficulty. In either case, the use of an in- 
stantaneous relation between length and tension reflects the fact that the valve 
leaflets are essentially elastic. 

Heart Muscle 

The phenomenological model of heart muscle used in this work is described in [S]. 
Models more closely related to the molecular mechanisms are also available [9], 
but the latter are far more complicated from the mathematical point of view. In the 
phenomenological model, each piece of heart muscle is represented as two springs 
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FIG. 3. The phenomenological model of heart muscle used in this work. The elastic elements 
satisfy instantaneous relations between length and tension, while the contractile element is charac- 
terized by a velocity of shortening which depends on the load [8]. 

and a “contractile element” arranged as in Fig. 3. The springs are characterized by 
functions Tp and TA (which may be nonlinear) giving the instantaneous relation 
between length and tension. The contractile element is characterized by a velocity 
of shortening which depends on the active tension, on the length of the muscle, and 
on an activation parameter which we shall call 01. Consequently, we have 

T = C=G) + T,(L - &d, 
-dL,,ldt = v(T, , L, a). 

(4.2) 

(4.3) 

The activation parameter is a given function of time measured from the time of 
stimulation of the muscle. We therefore represent each segment of heart muscle by 
a pair of links of the type described above for the valve leaflets but with this important 
difference: In the active link, the resting length is reinterpreted as the contractile- 
element length, and it changes with time. 

Note that the contractile-element length LCE is not a given function of time. Instead 
it satisfies an ordinary differential equation in which L, the length of the link, appears, 
Thus LCE depends indirectly on the motion of the fluid. An implicit scheme for this 
differential equation is 

L n+1 = 
CE GE - (0 t)v(T:+l, L*+l, an+q, (4.4) 

where 

c+’ = T”(L”+l - L$). (4.5) 

Substituting (4.4) in (4.5) one eliminates Lg$ and obtains a relation for length and 
tension for the active link at time IZ + 1. In this way we return to the general concept 
of a link with a given length-tension relation, but that relation is different at each 
time step. Moreover, the quantity LCB for each active link must be stored and updated 
at each time step. 



228 CHARLES S. PESKlN 

Artificial Valves 

Typical prosthetic valves in current use have rigid, almost neutrally buoyant occlu- 
ders, which move in a cage and alternately open and close the orifice guarded by the 
valve. Such an occluder can be represented as a link structure provided that 

(i) the links resist compression as well as extension; 
(ii) the arrangement of the links yields an overall structure which resists 

bending; 
(iii) the stiffness is sufficiently large that the deformations are of no importance. 

For example, a disk-type occluder in two-dimensional flow can be represented by the 
“railroad-bridge” structure of Fig. 4. 

FIG. 4. A structure which resists bending, constructed from links which resist both compression 
and extension. We use this structure in the two-dimensional representation of a disk for an arti- 
ficial valve. 

5. DISCRETIZATION OF THE NAVIER-STOKES EQUATIONS 

It will be shown below how the boundary forces are applied to the fluid mesh. 
Here we shall assume that this has already been done, and that the problem is to 
solve the Navier-Stokes equations with given force density F in a square, periodic box. 
For this purpose we use the method of Chorin [2], which will be briefly summarized 
here. 

Introduce a square mesh of mesh width h and a time step k, and let I$ and Fz 
be the flow and force density evaluated at t = nk, x = (ih, jh). Let Dz+, D,-, Dy+, D,- 
be the forward and backward divided differences in the two space directions, e.g., 

Pz+&ij = h-YA+l.i - 4d. (5.1) 

Also, let D,*, Duo be the centered divided differences, e.g., 

(D;G”+>ij = Gw-l (54,l.j - 4i-1.d. (5.2) 

Moreover, let 

Du = Drou, + Dy*u, = V . u + O(h*), 

G$ = (Dzo$, D,“+) = V$ + O(hz). 

With this notation, Chorin’s scheme proceeds as follows: 

u* = II” + kF”, 
[I + k(u,“D,(’ - D,+D,-)]u** = u*, 

(5.3) 

(5.4) 

(5.5) 
(5.6) 
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[I + k(u,nDyo - Dy+Dy-)]u*** = u**, (5.7) 

,,n+l = ,,“** - kGpn+l, (5.8) 

where pn+l is chosen so that 

Du”+l = 0. (5.9 

Equations (5.6) and (5.7) are essentially one dimensional, since each contains 
differences in one space direction only. The corresponding matrix is tridiagonal 
except for an extra pair of elements introduced by the periodicity. The method used 
to solve such systems is discussed in [l]. 

The pair of equations (5.8~(5.9) leads to the following equation for pn+l: 

k DGpn+l = Du**“. (5.10) 

On a periodic domain with an even number of points in each space direction, Eq. (5.10) 
consists of four independent systems of equations, since only mesh points with the 
same parity in each coordinate are coupled. (For example, all mesh points having i 
even and j odd are coupled.) This is easily seen when we write out DGp as follows: 

(DGP)u = (4V-1Cp,+~,, f Pi-2.i + Ps.~+z + pi,+2 - 4pij). (5.11) 

Each of the four systems is solved using the fast Laplace-solver of [3]. 
It is important to note that the boundary force field, which is not at all smooth, 

influences the entire flow instantaneously through its effect on the pressure field p. 
We can expect smooth results, then, only if each boundary point interacts equally with 
all four of the staggered meshes upon which p is calculated. These considerations will 
be very important in the next section. 

6. CONNECTING THE BOUNDARY AND FLUID REPRFSENTA~ONS 

The Lagrangian mesh upon which the boundary forces f, and the boundary con- 
figuration xk are stored has points which do not coincide with fluid mesh points. 
We therefore have the problem of interpolating the velocity field from the fluid mesh 
to the boundary points and spreading the boundary forces from the boundary points 
to the nearly mesh points of the fluid. 

An indication of how this should be done comes from Eqs. (2.8) and (2.6) which 
have the natural discretization 

uk = C h%,Ddxk), 
ii (6.1) 

F<j = (l/N) C WdXd, (6.2) 
k 
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where the kernel Dij(xlc>, which corresponds to 6(x - xk), remains to be constructed. 
Let x = (x, y) and let 

where 

Dij(X) = d(x - ih) d( y - jh), (6.3) 

d(r) = (1/4h)(l + cos(m/2h)), I r I < 2k 

= 0, / r / >, 2h. 
(6.4) 

The shape of this function is shown in Fig. 5. 

I 
-3h -2h -h 0 h 2h 3h ’ 

FIG. 5. Numerical representation of the I-function. 

The function d(r) satisfies the following conditions: 

pqx-ih)=y d(x)dx= 1, 
* --m (6.5) 

d(x) = 0 when I x / > 2h, 

d(x) = q-x), 

1 hd(x - ih) = C hd(x - ih) = &, 
i even i odd 

c hd(x, - ih) d(x, - ih) < c hd”(x - ih) = 3/8h. 
i z 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

The properties (6..5)-(6.7) guarantee that d corresponds to the a-function. For 
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example, if 4i are the samples of a continuous function 4 on a mesh of mesh width h, 
we have as a consequence of these properties 

$i c hd(x - ih)$b, = 4(x). 
z 

(6.10) 

The additional property (6.8) guarantees that any boundary point interacts equally 
with all four of the staggered meshes upon which the pressure field is calculated 
(see Eq. (5.11)). 

The property (6.9) is the most interesting. To understand its importance consider 
the interaction between pairs of boundary points as transmitted through the fluid. 
Such an interaction will involve the double interpolation of a discrete, translation 
invariant, Green’s function. For simplicity, we study such a double interpolation in 
one dimension. Let g(il - iZ) be the discrete Green’s function giving the influence 
of mesh point i1 on iZ . Then we construct g’(xl , XJ as follows: 

g”(Xl ) x2) = c hZd(X1 - i,h) g(il - iz) d(x, - i&) (6.11) 
i,i, 

where i = i, - it . 

= c hg(i) c hd(x, - i,h) d(x, + ih - i,h), (6.12) 
L 5 

, 

According to the property (6.9), the coefficient of g(i) now achieves a unique 
maximum value when x1 - xZ = i/z, independent of the individual positions of the 
points .x1 and xZ . 

Remark. This is not complete translation invariance. We would like to have g” 
itself depend only on x1 - x2 . To achieve this for arbitrary g(il - iz) it would be 
necessary to have some relation of the form 

c hd(x, - ih) d(x2 - ih) = f(Xl - x2). (6.13) 
z 

Indeed such a relation holds for the &function itself, since we have 

s 6(x, - x) 6(x, - x) dx = 6(x, - x2). (6.14) 

Unfortunately, however, Eq. (6.13) is incompatible with the finite support of the 
function d. To see this, choose / x1 - x2 1 such that the support of d(xl - ih) d(x,-ih) 
has length h/2. Then the sum in Eq. (6.13) has at most one nonzero term. Now if we 
translate x1 and x2 , holding x1 - x2 constant, we can always find places where there 
is one nonzero term and others where there are none. Consequently, the sum in Eq. 
(6.13) cannot depend only on x1 - x2 when the function d has finite support. 

We have listed above certain properties of the function d(r). One may also ask to 
what extent these properties uniquely determine the function. In this connection we 
first note that some of the properties are consequences of the others. In particular, 
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Eq. (6.5) is a consequence of (6.8) and the inequality in (6.9) is a consequence of the 
equality in (6.9) because of the Schwarz inequality. The fact that the constant in 
(6.9) is 3/8h is also a consequence of the other properties. As a minimal set of 
properties we may therefore take (6.6)-(6.8) and 

C hd2(x - ih) = constant, independent of x. (6.15) 

One can then verify that these conditions alone determine the function d(r) uniquely 
at the points 1 r 1 = 0, h/2, h, 3h/4, 2h and, of course on 1 r j > 2h. Moreover, if the 
function d(r) is given on 0 < r < h/2, then its continuation to the rest of the real 
line is uniquely determined. Thus the stated conditions severely restrict the choice 
of the function d(r), and (6.4) seems like the simplest choice compatible with these 
conditions. 

7. NUMERICAL STABILITY 

In Section 5, Chorin’s scheme for the Navier-Stokes equations was summarized 
with F given. In the present problem, F is very sensitive to boundary configuration, 
and an implicit scheme is needed to secure numerical stability. Fortunately, it is 
enough to use an implicit fractional step. That is, we compute the boundary forces 
not from the final configuration xn+l but from a configuration x* defined implicitly 
as follows: 

xk * = Xkn + dtUk*, (7.1) 

u; = u; + AtF;, (7.2) 

where 

uk* = c h2Dij(x;)u:j , 
ij 

(7.3) 

F; = (l/N) c f,(x,* “’ XN*) &(x,“). 
k 

(7.4) 

Substituting, we find the following equation for x*: 

xk * = Xkn + AtUkn + ((At)2/N) C 1 h2Dij(Xln) Dij(Xk-) fl(X,* **. XN*)* (7.5) 
2 ij 

The quantity 

C h2D&XIn) &j(Xkn) = 9/64h2y 
ti 

= < 9/64h2, 

= 0, 

k =!, 

k # I, (7.6) 

/ Xkn - Xln 1 > 4h Or 1 Ykn - J’ln / > 4h. 
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It is therefore a reasonable approximation to replace this quantity by /3(9/64h2)6,, , 
where p is an adjustable parameter of order 1. In that case Eq. (7.5) takes the following 
form in which all reference to the fluid mesh has disappeared: 

where 

xk* = XkO + hf,(x,* ... xN*), (7.7) 

XkO = xkn + Atu,” = known quantity at beginning of nth time step, (7.8) 

h = 9 (At)’ --p. 
64h2 N (7.9) 

We remark that if At = U(h2) and N = O(h-I), then X = O(h3). Consequently, as 
h-+0, xk* -+ xkO + xkn and fk + fk(xln *** xNn). 

The method for solving Eq. (7.7) was discussed in Section 3. Once this problem 
is solved the forces are regarded as known and no further use is made of the boundary 
configuration (xk*}. 

8. SOURCES AND SINKS 

Our specific application in this work is the flow of blood on the left side of the 
heart during ventricular diastole and early systole. This flow is influenced by the 
return of blood to the left atrium through the pulmonary veins. To model this venous 
return we put a source in the middle of the atrium and a corresponding sink exterior 
to the heart to absorb the volume displaced by the moving walls. In this section we 
first specify the nature of the source, and then show how its presence alters the 
numerical method. 

It will be very convenient to have the source strength determined at any instant by 
a single quantity Q, the volume rate of flow. Thus, we write instead of V * u = 0, 

V * u = 4(x, t> = Q(t) h,(x) (8.1) 

Since the domain is periodic, the integral of V * u is identically zero, and 

s XED &4x> do = 0. (8.2) 

Equation (8.2) is the mathematical reason why a sink is needed corresponding to the 
atrial source. To specify the spatial distribution of the source and the sink, introduce 
two nonnegative functions w, and w, with integral 1, and let 

HOW = wa(x - X,) - w,(x), (3.8) 

where X, is a point in the middle of the left atrium. The support of w,(x) is exterior 
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to the heart (actually, near the edges of the domain), and the support of w,(x - X,) is 
in the atrium. 

Since w, and w, are weight functions, it is natural to define the average pressures at 
the source and the sink as 

p,(t) = j Ax, t> w,(x - x,1 4 XER (8.4) 

f',(t) = jxd)~(X, 0 we(x) dt. (8.5) 

Thinking of P,(t) as a reference pressure, we define 

P atrium = f’u - f’o = jx,n~(x> t) b(x) du = (90 2 PI, (8.6) 

and we note that Patrrum is unchanged if a constant is added to the pressure field. 
We specify Q(t) in terms of P atrium(t) in the following way 

Q(t) = Qs - asPatrium( (8.7) 

where Qs and 01, are constants. This amounts to a linear resistance model of the flow 
of blood through the pulmonary veins. 

Substituting (8.7) and (8.6) in (8.1), we find 

To accommodate this source, the numerical solution of the Navier-Stokes equations 
(Section 5) is modified as follows. Instead of Eqs. (5.9) and (5.10), we have 

where 

Dun+l = #o{Qs - d#o 3 P~+%S, 
kDG/P+l = Du**" - &{Qs - LX,(~,,~~+~)~}, 

(.A gh = C h% g<j . 
ij 

(8.9) 
(8.10) 

(8.11) 

Equation (8.10) is easily solved at the expense of two calls to a fast Laplace-solver. 
First solve for p,, and pr which are defined (up to a constant) by 

kD%, = #oQs > (8.12) 

kDGp, = Du***. (8.13) 

By linearity, pn+r will have the form 

where 
P n+1 = p1 - hp, ) (8.14) 

XQ, = {Q, - 44o 9 P~+‘M. (8.15) 
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Substituting (8.14) in (8.15) and solving for h we get 

Since DG, the discrete Laplacian, is a nonpositive operator, we see from (8.12) that 
(lcIO , P& < 0. The denominator in the expression for h is therefore bounded away 
from zero. Also, since (&, , I)!‘ = 0, h is uniquely determined despite the fact that 
p. and p1 are only defined up to a constant. 

All of the expressions in this section remain valid if #0 depends on t as well as x. 
This will actually be the case since the atrium moves during the cardiac cycle. Equation 
(8.12) must therefore be solved anew at each time step, and the presence of the 
source doubles the amount of time spent solving Laplace’s equation. It should be 
mentioned, however, that for a fixed source Eq. (8.12) could be solved once, and 
p. could be stored on the disk. In that case, the extra computational effort associated 
with the source would be very small. 

9. SUMMARY OF THE NUMERICAL SCHEME 

At each time step, a boundary configuration xLn and a fluid velocity field uij are 
given. The construction of x”+l and un+l proceeds as follows: 

xk * = [Xkn + (&)ukn] + hfk(&* “’ x,*), 

F; = (l/N) c f&* ... XN*) Dij(xkn), 
k 

(9.1) 

(9.2) 

u* = un + (&)F*, (9.3) 
{I + (&)(u,“D,~ - Dr+Dr-)}u** = u*, (9.4) 

{I + (&)(u,~D,~ - D,+D,-)}u*** = u**, (9.5) 
(At) DGP n+l = Du*** - #,{Q, - 490 , P”+%L (9.6) 

u"+l = ,,*"* - (At)Gp"+l, (9.7) 

?Z+1 
xk = xkn + (At) 1 h2&(Xk”)U,“,f’. (9.8) 

ij 

In the foregoing, step (9.1) involves the solution of a nonlinear system of equations, 
and steps (9.4) through (9.6) involve the solution of linear systems. The methods of 
solution have been discussed above. 

10. RESULTS: FLOW PATTERNS OF THE MITRAL VALVE 

The mitral valve is the inflow valve to the left ventricle. Blood returning from the 
lungs to the heart enters the left atrium, from which it is transferred to the left ventricle 
across the mitral valve. In order to study the flow patterns of the mitral valve, we 

58I/25/3-3 
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need to construct a representation of the heart which includes at least the left atrium 
and the left ventricle. These will be constructed out of muscular and elastic links, as 
described above, arranged in the two-dimensional geometry shown in Fig. 2. This 
arrangement resembles a cross section of the left heart in a plane which bisects the 
two major leaflets of the mitral valve and which also passes through the apex of the 
heart. The orientation of this plane is indicated in Fig. 6. 

b) 
FIG. 6. (a) Base of the heart, showing the orientation of the mitral plane, which bisects the two 

major leaflets of the mitral valve and which contains the apex of the left ventricle. (b) Left heart 
structures of the mitral plane: L.A. = left atrium, L.V. = left ventricle, Ao. = aorta, A.L., P.L. = 
anterior and posterior leaflets of the mitral valve. 

There are several aspects of cardiac anatomy which do not appear directly in this 
plane but which nevertheless cannot be neglected. These are represented by crosslinks 
in the model. (By a crosslink we mean a link whose length is independent of the mesh 
width.) For example, the papillary muscles and chordae tendinae which support the 
mitral valve lie on either side of the plane of interest. Each muscle has chordae which 
attach to both leaflets near the commissures. We represent this on the mode1 by 
crosslinks from the tips of the leaflets to the point which represents the apex of the 
heart. 

Similarly, the circular muscle in the wall of the ventricle near the equatorial plane 
cannot appear directly in the model, but the resultant force it exerts on the fluid is 
inward. This muscle can therefore be represented by crosslinks from one side of the 
ventricle to the other. The shapes of the outflow tract and of the atrioventricular ring 
are also maintained by cross-links. 

In the case of the atrioventricular ring we use crosslinks which represent a mixture 
of atria1 and ventricular muscle. This corresponds to the physiological observation 
that the ring begins to contract during atria1 systole and continues to contract during 
ventricular systole. Incidently, when passive elastic crosslinks were tried for the 
atrioventricular ring, we found a remarkable expansion of the ring during ventricular 
systole which interfered with effective closure of the mitral valve. 

Inflow to the left atrium from the pulmonary veins is supplied in the mode1 by a 
source in the middle of the atria1 chamber. We assume that the inflow has the form 
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(QS - asPatrium), where QS and cyS are constants. A corresponding sink near the 
edges of the mesh (outside the heart) absorbs the external fluid displaced by changes 
in cardiac volume. At the present time, we have not included an aortic valve in the 
model, and we restrict our calculations to that part of the cardiac cycle when the 
aortic valve is closed. We have, however, included an outflow tract in the ventricular 
geometry, since this feature of ventricular anatomy is important to the function of the 
anterior leaflet of the mitral valve. (In particular, it allows room for a strong vortex 
to form behind the anterior leaflet. This vortex participates in valve closure [IO, 1 I].) 

The timing and the strength of contraction of the atria1 and ventricular muscle 
are controlled in the model by specifying the state of activation for each type of muscle 
as a given function of time. At the present time, we supply one such activation function 
for the atria1 muscle and another for the ventricular. This allows for a delay between 
the contraction of the atrium and the ventricle, but it means that all parts of the 
atrium contract simultaneously and then that all parts of the ventricle contract 
simultaneously. In fact, the most important delay in the conduction of the cardiac 
impulse occurs at the junction of the atrium and the ventricle, but it would also be 
possible to include in the model the smaller delays which occur during the spread 
of excitation over the atrium or over the ventricle. 

The physical quantities which set the scale for the fluid dynamics of the human 
mitral valve are as follows: 

L, = diameter of the mitral ring = 3.2 cm; 

To = duration of a heartbeat = 0.86 set; 

v = kinematic viscosity of blood = 0.04 cm2/sec. 

These can be combined into a dimensionless parameter 

R, = Lo2/vTog 3 x 102. (10.1) 

This parameter is closely related to the usual Reynolds number LU/v, where U is a 
typical velocity of the flow. To make the connection simply note that the fluid motion 
is generated by the walls of the heart. The motions of the walls occur through distances 
of order L in times of order T. Thus U has the same order of magnitude as L/T. 

In the present work we reduce the Reynolds number by setting L = yL,, , T = yT, 
so that R = yR, . The results presented here were computed with y = 0.01. The 
factor y is introduced to make the problem computationally tractable, since the 
finite difference method requires a mesh width which is inversely proportional to the 
Reynolds number [2]. We like to think that the introduction of this factor is justified 
by the comparative physiology of the hearts of different mammals. There is some 
evidence, reviewed by this author in [5], that the hearts of different mammals are 
roughly scale models of each other and that L is roughly proportional to T. The 
largest mammals have Reynolds numbers about 100 times greater than the smallest 
mammals. This suggests the hypothesis that the essential features of cardiac fluid 
dynamics are not very sensitive to Reynolds number. Of course, this point should be 
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FIG. 7. Flow patterns of the mitral valve. Frames 1-7, relaxation of the ventricle. Frames 8-11, 
contraction of the atrium. Frame 12, contraction of the ventricle. Note the pattern of valve opening, 
vortex formation, and partial valve closure by the vortex streamlines which occurs during relaxation 
of the ventricle and which is repeated during the contraction of the atrium. Vortex formation occurs 
at the cusp margins. BacktIow in frame 12 consists of fluid displaced by the moving CUSPS, as the 
flow is still in the forward direction at and below the cusp margins. 
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FIG. 7. Continued. 
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FIG. 7. Continued. 
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FIG. 7. Confinued. 
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FIG. I. Continued. 
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FIG. 2 i. Flow patterns of a prosthetic mitral valve. Timing is the same as in Fig. 7. The valve 
translate : open and rotate about a stop to its maximum angle of opening. Vortices form but are 
effective in closing the valve. Backflow during closure is greater and involves fluid escaping past 
valve as well as volume displaced. 
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FIG. 8. Continued. 
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FIG. S. Conrimed. 
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FIG. 8. Continued. 
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FIG. 8. Continued. 
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FIG. 8. Continued. 
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checked by solving the heart flow problem with a numerical scheme which is efficient 
even at the Reynolds numbers found in larger mammals. This has not yet been done. 
Also, we should remember that the lack of dependence of the cardiac flow pattern 
on Reynolds number (if it is a real phenomenon) may be caused by some special 
feature of cardiac anatomy and may therefore fail to hold in the presence of certain 
artificial valves. 

The numerical parameters are as follows. We use a square mesh with 64 points 
in each direction. The part of the cardiac cycle which is of interest for the mitral 
valve is divided into 640 time steps. The program requires 3OOOO0, words of core on 
the CDC 6600 and takes about 2 hr. for each run. 

The most useful form of output from these computational experiments is a cinC 
film produced by the CALCOMP 1675. In Figs. 7 and 8 we show selected frames from 
two such films, one for the natural and one for an artificial mitral valve. On each 
frame we see the instantaneous position of the heart and valve, and an array of line 
segments (vectors) giving the magnitude and direction of the flow at each mesh point. 
In interpreting these figures it is important to keep in mind that the boundaries are 
moving. Thus the streamlines will cross the boundaries. This does not mean that 
fluid particles are crossing the boundaries, but only that the boundaries are moving 
at the local fluid velocity. 

The prosthetic mitral valve shown in Fig. 8 is an eccentric monocusp valve [14], 
the occluder of which is a flat plate which is mounted in such a way that it translates 
forward a certain fixed distance and then rotates about one end to its maximally 
open position. The constraints on the valve are enforced in the computation by 
forces generated in special links. Clearly, the translation distance and the maximum 
angle of opening are design parameters for this class of valves, and our computational 
methods can be used to study the influence of these parameters on valve performance. 
This has not yet been done, but it illustrates how the methods of this paper can be 
applied to the practical problem of valve design. 

11. CONCLUSIONS 

The great strength of the numerical method reported in this paper is its generality. 
The investigator can construct a heart and valve of arbitrary design in the computer 
and test their combined performance. Interventions that would be difficult to perform 
in the experimental animal are straightforward in the computational context. For 
example, one can vary the strength and timing of the atria1 contraction by changing 
only a few cards in the computer program. If different artificial valves are to be 
compared, they can be tested under identical conditions without any difficulty. 

The application of the method in its present form involves certain practical difficulties, 
however. Although the method ,will accommodate a heart and valve of arbitrary 
complexity, the work of the investigator in specifying such a structure in terms of its 
links is considerable. Although the method is applicable in principle to arbitrarily 
high Reynolds numbers and to any number of dimensions, the limitations of computer 
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time and available core impose severe restrictions. In particular, we are limited to two 
dimensions and to very low Reynolds numbers. Despite these limitations, the results 
bear a striking resemblance to the flow patterns and valve motions which have been 
reported in animal experiments [6, 1 l-131 and in physical models [IO]. 

Although we have not yet attempted a quantitative comparison, we emphasize 
that our computational method generates certain data which may be directly compared 
with experiments. Among these we mention the space-averaged atria1 and ventricular 
pressures at each instant, the instantaneous volume rate of flow through the mitral 
valve, and the motions of the valve leaflets. These data are available experimentally 
by means of pressure catheters, electromagnetic flow meters, and echocardiagrams. 
The value of the method, however, is that it also generates important information 
which would be very difficult to obtain in animal experiments. For example, the 
computational method gives us the flow pattern u(x, t). 

In our opinion, the difficulties mentioned above will be removed by future research. 
As more becomes known about the pattern of the structure of the heart wall, the 
task of specifying the design of a computational cardiac chamber may be considerably 
reduced. Also, it may become possible to remove the practical restrictions on the 
Reynolds number and on the number of dimensions by the use of other numerical 
methods for the fluid mechanical part of the calculation. The formulation of the 
problem and the method of representing the heart and valves in terms of a link 
structure may survive this transition. 
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